A Markov Random Field-based Approach to Characterizing Human Brain Development Using Spatial-temporal Transcriptome Data.
نویسندگان
چکیده
Human neurodevelopment is a highly regulated biological process. In this article, we study the dynamic changes of neurodevelopment through the analysis of human brain microarray data, sampled from 16 brain regions in 15 time periods of neurodevelopment. We develop a two-step inferential procedure to identify expressed and unexpressed genes and to detect differentially expressed genes between adjacent time periods. Markov Random Field (MRF) models are used to efficiently utilize the information embedded in brain region similarity and temporal dependency in our approach. We develop and implement a Monte Carlo expectation-maximization (MCEM) algorithm to estimate the model parameters. Simulation studies suggest that our approach achieves lower misclassification error and potential gain in power compared with models not incorporating spatial similarity and temporal dependency.
منابع مشابه
Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping
Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio–temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurr...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملMultitemporal Crop Type Classification Using Conditional Random Fields and Rapideye Data
The task of crop type classification with multitemporal imagery is nowadays often done applying classifiers that are originally developed for single images like support vector machines (SVM). These approaches do not model temporal dependencies in an explicit way. Existing approaches that make use of temporal dependencies are in most cases quite simple and based on rules. Approaches that integra...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملمدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان
Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The annals of applied statistics
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2015